Build and run streaming applications with Apache Flink and Amazon Kinesis Data Analytics

· 261 words · 2 minute read

Stream processing facilitates the collection, processing, and analysis of real-time data and enables the continuous generation of insights and quick reactions to emerging situations. This capability is useful when the value of derived insights diminishes over time. Hence, the faster you can react to a detected situation, the more valuable the reaction is going to be. Consider, for instance, a streaming application that analyzes and blocks fraudulent credit card transactions while they occur. Compare that application to a traditional batch-oriented approach that identifies fraudulent transactions at the end of every business day and generates a nice report for you to read the next morning.

It is quite common for the value of insights to diminish over time. Therefore, using stream processing can substantially improve the value of your analytics application. However, building and operating a streaming application that continuously receives and processes data is much more challenging than operating a traditional batch-oriented analytics application.

In this post, we discuss how you can use Apache Flink and Amazon Kinesis Data Analytics for Java Applications to address these challenges. We explore how to build a reliable, scalable, and highly available streaming architecture based on managed services that substantially reduce the operational overhead compared to a self-managed environment. We particularly focus on how to prepare and run Flink applications with Kinesis Data Analytics for Java Applications. To this end, we use an exemplary scenario that includes source code and AWS CloudFormation templates. You can follow along with this example using your own AWS account or adapt the code according to your specific requirements.

https://aws.amazon.com/blogs/big-data/build-and-run-streaming-applications-with-apache-flink-and-amazon-kinesis-data-analytics-for-java-applications/