Build a Real-time Stream Processing Pipeline with Apache Flink on AWS (FF)

The increasing number of available data sources in today’s application stacks created a demand to continuously capture and process data from various sources to quickly turn high volume streams of raw data into actionable insights. Apache Flink addresses many of the challenges faced in this domain as it’s specifically tailored to distributed computations over streams. While Flink provides all the necessary capabilities to process streaming data, provisioning and maintaining a Flink cluster still requires considerable effort and expertise. We will discuss how cloud services can remove most of the burden of running the clusters underlying your Flink jobs and explain how to build a real-time processing pipeline on top of AWS by integrating Flink with Amazon Kinesis and Amazon EMR. We will furthermore illustrate how to leverage the reliable, scalable, and elastic nature of the AWS cloud to effectively create and operate your real-time processing pipeline with little operational overhead. ...

September 13, 2017  ·  Presentation

Build a Real-time Stream Processing Pipeline with Apache Flink on AWS

In today’s business environments, data is generated in a continuous fashion by a steadily increasing number of diverse data sources. Therefore, the ability to continuously capture, store, and process this data to quickly turn high-volume streams of raw data into actionable insights has become a substantial competitive advantage for organizations. Apache Flink is an open source project that is well-suited to form the basis of such a stream processing pipeline. It offers unique capabilities that are tailored to the continuous analysis of streaming data. However, building and maintaining a pipeline based on Flink often requires considerable expertise, in addition to physical resources and operational efforts. ...

April 21, 2017  ·  Blog Post